
TDA Progre._,Report42-94
i f.j_ ,

N89-10203

April-June 1988

A Software Simulation Study of the Long Constraint
Length VLSI Viterbi Decoder

S. Arnold and F. Pollara

CommunicationsSystemsResearchSection

A software simulation of long constraint length Viterbi decoders has been developed.

This software closely follows the hardware architecture that has been chosen for the

VLS1 implementation. The program is used to validate the design of the decoder and to

generate test vectors for the VLS1 circuits.

I. Introduction

Convolutional codes have been used on deep space probes

for several years. During the last few years, TDA Advanced

Systems undertook a research effort [1] to develop advanced

coding techniques capable of gaining an additional 2 dB over

the present performance of deep space missions. Current cod-

ing systems are based on a K = 7, r = 1/2 convolutional code

concatenated with an 8-bit (255,223) Reed-Solomon (RS)

code, where K is the constraint length and r is the code rate.

The main result of this research effort was the discovery of

new convolutional codes with K = 15 and r = 1/6 which exceed

the 2-dB goal when concatenated with a 10-bit (1023,959) RS
code. Recently, the delay imposed on the Galileo mission

introduced the possibility of including a K = 15, r = 1/4 code

in this mission. This experimental code [2] will gain approxi-

mately 1.5 dB over the current NASA-standard code. The
Galileo experiment, together with the potential offered by

these coding gains for future missions, has led to an effort to

build a VLSI-based Viterbi decoder capable of decoding codes

with K up to 15 and r = 1/n, n = 2,3,4,5,6, at speeds approach-

ing 1 Mbit/s. 1

II. Decoder Architecture

The complexity of a Viterbi decoder depends mainly on the

constraint length K, since the number of states is 2K-1 . The

decoder for the new K = 15 codes is approximately 256 times

more complex than the current MCD (Maximum-likelihood

Convolutional Decoder) used in the DSN stations to decode

K = 7 codes. The requirement on the information data rate

forces the use of heavily parallel architectures.

After evaluation of several design alternatives, it was decided

to use a fully parallel architecture consisting of 2K-2 = 8192

physical butterflies operating in parallel. Each butterfly uses
bit-serial arithmetic to perform the internal operations of add-

1j. Statman, "Preliminary Design Review for Big Viterbi Decoder
(BVD)," JPL internal document, March 31, 1988.

210

compare-select, since this is more suitable to fast VLSI cir-

cuits, and represents the metrics as 16-bit numbers. Each but-

terfly contains two states of the decoder and outputs two

decision bits to the trace-back memory. The 8192 butterflies

are organized in identical VLSI chips containing 32 butterflies

each, and in 16 identical boards containing 16 chips each [3].

The concern was to develop a software simulation of the

complete decoder so that (1) several new design ideas could be
tested and validated; and (2) test vectors could be generated

for signals at various key points in the decoder and then used

to test the VLSI design. Given the complexity and the cost of

this project, it was necessary to have a complete software de-

coder that closely emulated the hardware architecture and

demonstrated the validity of the design.

III. Software Decoder

The software decoder consists of a program developed on a

SUN 3/260 workstation and written in C-language. Since the

program runs on a sequential computer, it scans through the

butterflies in sequential order, while the hardware performs all

these operations in parallel. The decoder is based on the hard-

ware design summarized in Figs. 1 and 2.

The add--compare-select circuit of Fig. 2 takes the branch

metrics p and q just computed and the previously computed

accumulated metrics mlo and rail from states i0 and il

and generates the updated metrics mlo , mjl and the decision

bits bit o and bit 1 , which are stored in the trace-back memory.
This memory is organized in three banks of L bits each, where

L is the path truncation length. Decoded bits are given by the

trace-back performed on the bank containing the "oldest"

decision bits. The detailed operation of the add-compare-

select module is shown in the flow diagram of Fig. 5. The tes_

for overflow is performed on the output accumulated metric

mio of butterfly number zero. Renormalization occurs if the

two most significant bits of m/o are both equal to one. In this
case, the most significant bit of all accumulated metrics is reset

to zero to prevent overflow of the metrics. The decoder de-

scribed in this article and its future VLSI implementation carl

decode any code with connection vectors G i = (Xio,xil

xn4), where xii E ((3,1) and Xio = xn4 = 1. Code search results
[1], [2] show that good codes always meet the constraint of

having a leading and trailing "1" in the connection vectors.

Because of this constraint, only two branch metrics, p and q,

need to be computed. When K < 15, this constraint is no

longer met, but it can be observed that in this case rail is
always equal to m/o, as shown in [3]. This is accomplished
with the switch in Fig. 2 or the test (K < 15) in Fig. 5.

Figure 1 represents the metric computer module present

in each butterfly. It takes the received symbols in sign and

magnitude representation and computes the two branch

metrics, p and q, as two 16-bit numbers. The register denoted

as LABEL i is initialized at startup time and contains an appro-

priate label for the ith butterfly. The value of this label is pro-
vided by the module encoder, whose operation is described by

the flow diagram of Fig. 3. Here NB represents the total num-

ber of butterflies (8192), i is the index of the current butter-

fly, and / the index of encoded symbols e/. First, the n en-

coded symbols ei are computed for the current butterfly. Then

LABELj is just given by the decimal equivalent of the binary
array (e o, e 1 e s). The other input to the metric computer

module, rmax, is just the sum of the magnitudes of the re-
ceived symbols for each information bit time. Notice that the

diagram in Fig. 1 shows six input received symbols, but it can

be used for any code rate r = l/n, n = 2,3,4,5,6, by setting the

unused symbols to zero. Figure 4 shows a flow diagram repre-

senting the computations taking place in the software. The

variable/" counts the received symbols modulo n.

IV. Operation of the Software Decoder

Testing a large Viterbi decoder is a complex task, since

some programming errors may be revealed only by particular

input sequences or error patterns. This decoder has been tested

first against an existing software decoder for K = 7 and r = 1/2,

which has been extensively used in the past. After it was ascer-

tained that the two programs had identical behavior, the new

program was tested with various other codes, and it also per-
formed according to expectations.

To run the program, which is reproduced in the Appendix,
the user must enter K, the inverse n of the rate, the path trun-

cation length L, and the generator polynomials in octal. Also,

the names of the Fries used to get the input received symbols

and to write the decoded bits must be provided. Currently, the

output consists of the decoded information bits and is written

to a disk file. The test signals to be used for future testing of

the VLSI circuits can be obtained by inserting print statements
anywhere desired in the program.

211

References

[1] J. H. Yuen and Q. D. Vo, "In Search ofa 2-dB Coding Gain," TDA Progress Report

42-8.3, vol. July-September 1985, Jet Propulsion Laboratory, Pasadena, California,

pp. 26-33, November 15, 1985.

[2] S. Dolinar, "A New Code for Galileo," TDA Progress Report 42-93, vol. January-

March 1988, Jet Propulsion Laboratory, Pasadena, California, pp. 83-96, May 15,
1988.

[3] O. Collins, "Techniques for Long Constraint Length Viterbi Decoders," Intern. Sym-

posium on Information Theory, Kobe, Japan, p. 28, June 1988.

212

LABEL i RECEIVED SYMBOLS

SIGN BITS
M

MAGNITUDE
M

@E>-

•
,,)D

_0__

Fig. 1. Metric computer hardware diagram

5

i=0

P

1

+

TEST L

OVERFLOW* I

-_ mjO

D bit0

D bit1

--- mjl

1

UP FOR K < 15
DOWN FOR K = 15

C = COMPARATOR

*THIS IS USED ONLY FOR BUTTERFLY = 0

Fig. 2. Add-compare-select hardware diagram

213

sC_-_--_
I _

I i=°lj=0

-1
I ej = 0MASK = Gj A i

: NO
_=__ ej = ej • MASK

RSHIFT MASK BY ONE BIT

1
I J=J+' I

I j=0LABEL i = 0 I

n-1 ILABELi = --_0 ej 2Jj=

I
I j=j+1 I

.. START

1
i, olp=0

rma× _ 0

"1
_= MAGNITUDE OF r i

SIGN = SIGN OF rj

e = BIT j OF LABEL i
^

rma x = rma x + r

1
I IF e_SIGN=1 Ip=p+'_

I
I J=J+_ I

(°)q = rma x - p

1

Fig. 4. Metric computer flow diagram

Fig. 3. Encoder flow diagram

214

START

t
INITIALIZE LOCAL
VARIABLES

1
SOO= miO + p
slO = mil + q
sO1 = miO + q
s11=mi1+p

TRUE FALSE

I mjO = sO0 IbitO = 0

TRUE FALSE

I mjl = s01 Ibit1 = 0

I=

TRUE FALSE

I mjl=mj0 I

YES

(END)

1
mjO = slO
bitO= 1

mjl= sll Jbitl = 0

I RESET TO 0
MSB OF ALL
METRICS

Fig. 5. Add-compare-select flow diagram

215

Appendix

include <stdio.h>

/*********************************** VLSI

/*
/*

/*

/*

/*

*/

This program simulates the long constraint length VLSI Viterbi decoder. */
It allows the user to decode convolutional codes with constraint length */

up to 15 and code rate 1/2 to 1/6. */
*/

int n; /* rate= 1/n */

int L; /* buffer length */

int p,q; /* branch metrics */

int n_tb; /* traceback addresses */

int time; /* traceback time */

int butt; /* loop counter */

int NS; /* number of states */

int NB; /* number of butterflies */

int k; /* constraint length */

int dec; /*

int mi0, mil, mj0, mjl; f*

int blk_time; f*

int bit_no; /*

int GP[6]; /*

int out/100]; /*

int outr[100];

int LABEL/8192];

decoding bank */
accumulated metrics */

time in traceback */

number of symbols decoded */

generator polynomials */

temp storage for decoded bits */

/* storage for decoded bits */

/* butterfly labels */

int metric/16384], old_metric/16384]; /* accumulated metric storage */

char flag; /* renormalization flag */

char bit0, bitl; /* decision bits */

char RAM/16384]/100]/3]; /* traceback RAM*/

main 0

{
int

int

int

int

int

int

int
int

mt

int

tb; /* traceback (tb) bank */

Mo; /* parameter to calculate memory size */

bank; /* loop counter */

blk_no; /* number of blocks decoded */

blk_par; /* block parity (0 or 1) */

n_dec; /* addresses of decoded bits */

state; /* loop counter */

symbol_no; /* loop counter */

state0, statel; /* current states of butterfly */

prev_state0, prev_state 1; /* previous states of butterfly */

/* received symbols (8-bit) */

/* input and output files of decoder */

/* input/output file pointers */

int recsym[6];

char decinp[10], decout[10];

FILE *fpl, *fp2;

printf ("The simulation can decode binary data with a constraint length");

priutf Ck < = 15 and code rate of 1/2 to 1/6");

printf ("Enter constraint length k");

216

scant C%d",&k);

printf ("Enter number of symbols n (2-6)");
scant ("%d",&n);

printf ("Enter length of traceback buffer L");

scant ("%d",&L);

for (symbol_no= 0; symbol_no< n; symbol_no+ +) {

printf ("Enter generating polynomial GP[%d] in OCTAL > ",symbol_no);

scanf C %o",&GP[symbol_no]);

if (k < 15) GP[symbol_no] < < = (15 - k);

]

printf ("Enter binary input filename");

scant C %s",decinp);

printf ("Enter output filename that will contain decoded bits");

scant (" %s",decout);

fpl = fopen (decinp,"r");

fp2 = fopen (decout,"w");

/* open file of received symbols */

/* open file for decoder output */

bit_no = 0;

symbol_no = 0;

flag = 0;
n_tb = 0;

/* set bit counter to zero */

/* set symbol counter to zero */

/* set renormalization flag to zero */

/* set starting tb addr. to zero */

Mo = 14;

NS = 01 < < Mo;

NB = NS/2;

/* number of states */

/* number of butterflies */

/* set storage of decoded bits to zero */

for time = 0; time < L; time+ +) out[time] = 0;

/* initialize metrics, accumulated metrics, and traceback RAM to zero*/

for (state = 0; state < NS; state+ +) {

metric[state] = 0;

old_metric[state] = 0;

for (time = 0; time < L; time+ +)

for (bank = 0; bank < 3; bank+ +)

RAM[state][time][bank] = 0;

]

/* generate the labels that are assigned to the butterfly */

encoder();

/* receive data bits and enter decoder loop */

while ((recsym[symbol_no] = getc (fpl)) != EOF) {

symbol_no+ + ;

if (symbol_no = = n) {

symbol_no = 0;

217

/* check value of flag to determine to renormalize accumulated metrics */

if(flag = = O)

for (state = 0; state < NS; state+ +)

old_metric[state] = metric[state];

else {

for (state = 0; state < NS; state+ +)

old_metric[state] = metric[state]&077777;/* clear MSB */

flag = 0;

blk_time = bit_no%L;

/* check to see if new traceback must be started */

if (blk_time = = O) {

blk_no = bit_no/L;

blk_par = blk_no%2;

tb = blk no%3;

dec = (tb+ 1)%3;
n_dec = n_tb;

n_tb = 0;

for (time = 0; time < L; time+ +) outr[time] = out[time];

}

/* determine whether to move left or right through traceback memory */

if (blk_par = = 0) time = L - blk_time - 1;

e Ise time = blk_time;

/* generate the addresses for the decoded bits and traceback */

ndec = (n_dec > > I) I(NB*RAM[n_dec][time][dec]);

n_tb = (n_tb > > 1) [(NB*RAM{n_tb][time][tb]);

out[blk_time] = (n_dec > > 5)&01; /* extract decoded bits */

/* Generate branch metrics associated with new received symbol, add to */

/* existing accumulated metrics, determine smallest accumulated metric */

/* at current state, and output decision bits to traceback memory */

for (butt = 0; butt < NB; butt+ +) {

/* compute the two current states of butterfly and their associated previous states */

state0 = butt < < 1;

statel = state0 + 1;

prev_state0 = butt;

prev_statel =prev state0 t NB;

metric__comp(recsym); /* call metric computer */

mi0 = old_metric[prev_state0];

mil = old_metric[prev_statel];

218

add_corn p_select(); /* calladd, compare, and select*/

metric[state0] = m j0 ;

metric[statel] = mjl ;

[* write to traceback RAM, the bits at corresponding state of butterfly */

RAM[state0][time][dec] = bit0;

RAM[statel][time][dec] = bitl;

}
fprintf (fp2,"%d",outr[L-blk_time-l]); /* output decoded bits */

fllush(fp2);

bit_no+ + ; /* increment bit counter */

/AAAAAAAAAAAAAAAAAAAAAAAAAAAAA METRIC COMPUTER ******************************

/* */

/* q'hJ_ subrout, ino computes the branch metrics from the "n" received */

/A nymt,ol _ . */

/* */

metric comp(recsym)

int *rccsym;

{
int symlx)l_no;

int sum_recsym;

int encoded_bit;

int mag_recsym;

int sign_recsym;

/* loop counter */

/* maximum branch metric */

/* one bit of branch label */

/* received symbol magnitude */

/* sign of received symbol */

sum_recsym = 0;

p=0;

/* set branch metric to zero */

for (symbol_no = 0; symbol_no < n; symbol_no+ +) {

mag_recsym = recsym[symbol_no] & 0177; /* mask the first eight bits */

sign_recsym = (recsym[symbol_no] > > 7) & 01; /* extract sign bit */

encodedbit = (LABEL[butt] > > symbol_no) & 01; /* strip label bits */

sum_recsym + = mag_recsym; /* sum all the received symbol magnitudes */

if ((encodedbit ^ sign_recsym) = = 01) p + = mag_recsym;

}
q = (sum_recsym -p);

************************** ADD, COMPARE, AND SELECT *************************

/* */
/* Add branch metrics to accumulated metrics. The pair of sums at each */

/* of the states is compared and the smallest is selected. The output */

/* of each of these decisions is the smallest accumulated metric at each */

/* state and the decision bits which are sent to the traceback memory. */

/* */

219

add_comp_select()

{
int s00, sl0, s01, sl 1; /* the accumulated metrics */

/* add branch metric to accumulated metric */

s00 = (mi0 + p);

sl0 = (mil + q);

s01 = (mi0 + q);

sll = (mil + p);

/* determine smallest metric for present two slatcs of butterfly */

if (st)() < sl0) { bit0 = O; mjO = sO0; }

else { bilO= 1; mjO= slO; }

if (sOl < sl I) I bill = O: mjl = sol; }

else [bill = I;,njl =sll; }

/* check constr:fi.t Icnglh and set OUtlm! accumulated metrics respectively *[

if (k < 15) mjl = mjO;

/* dr'lorraine if at't'umuhltcd metrics tntml be rcnor,nalized, if so, set flag */

if (bull = = 0 && (¿njO > > 14) = = 3) flag = I;

*/

* This subroutine generates the labels for each butterfly by utilizing */

* the appropriate generating polynomials. */

*/

encoder()

{
int butt;

int symbol_no;

int encoded[6];

unsigned int masked;

/* loop counter */

/* loop counter */

/* encoded symbols */

/* the masked state */

/* encode butterfly labels and do appropriate shifting */

for (butt = 0; butt < NB; butt+ +) {

for (symbol_no = 0; symbol_no < n; symbol_no+ +) {

encoded[symbol_no] = 0;

masked = (butt < < 1) & GP[symbol_no]; /* mask the butterfly */

for (; masked > 0; masked > > = 1)

encoded[symbol_no] ^= masked; /* sum the bits of butterfly */

220

LABEL[butt] = 0;

for (symbol_no = 0; symbol_no < n; symbol_no+ +)

LABEL[butt] 1=(encoded[symbol_no]&01) < < symbol_no;

221

